شرکت فنی مهندسی سازه گستر تایماز

استان آذربایجان شرقی _ تبریز ـ بازار (راسته کوچه)خیابان جمهوری اسلامی، روبروی مسجد انگجی ، طبقه فوقانی پلیس+10

شرکت فنی مهندسی سازه گستر تایماز

استان آذربایجان شرقی _ تبریز ـ بازار (راسته کوچه)خیابان جمهوری اسلامی، روبروی مسجد انگجی ، طبقه فوقانی پلیس+10

ترمیم و تقویت سازه های بتنی توسط دیوار برشی فولادی - قسمت 3 (پای

- مقاومت لرزه ای سازه ها با استفاده از مقاومت نهایی پایین در قابهای مهار بندی و پانلهای برشی
کمانش قاب مهاربندی شده (بادبند)
تجربیات قبلی نشان می دهد که ساختمان هایی که مطابق مقررات امروزی طراحی وساخته نشده اند ، نمی توانند در مقابل نیروی زلزله مقاومت کرده و متحمل خسارتهایی می شوند . در تایوان این ساختمانها اکثرا سازه های بتن آرمه هستند و نیاز به ترمیم برای بهبود مقاومت لرزه ای دارند . قابهای ممان گیر (BIB) و پانلهای برشی فولادی ثابت شده که دارای مقاومت بالا و شکل پذیری بالا و حلقه های هیستریسس ثابتی وپایداری دارد . قاب مهار شده با بادبند شامل المانهای باربر و المانهای مهاربندی برای بارهای جانبی هستند .

بارهای محوری توسط المانهای حمال (تیر) مهار می شوند و که تکیه گاههای جانبی المان کار جلوگیری از کمانش عضو را به عهده دارند . دیوار برشی فولادی ساخته شده از LYP مانند یک المان باربر برشی زمانی که به خوبی ، طراحی شود ، می تواند رفتار خوبی در برابر نیروهای لرزه ای داشته باشد . در این تحقیق قابهای قابهای ممان گیر ودیوار برشی فولادی برای مقاوم سازی قابهای بتنی مورد استفاده شده اند و کارایی هر یک از آنها مورد آزمایش قرار می گیرد .

روش آزمایش:
قاب بتنی با مقیاس 0.8 ساخته شده است . شکل 6 نشان دهنده جزئیات قاب بتنی را نشان می دهد . یکی از قابهای بتنی بدون تقویت تست می شود که طبق MRF طراحی شده است . دومین نمونه توسط بادبند ، ساخته شده از فولاد LYP100 مهار شده که طبق BIBLYP طراحی شده است . سومین نمونه بادبند از فولاد A36 و طبق BIBA36 طراحی شده است . چهارمین نمونه توسط دیوار برشی فولادی ساخته شده از فولاد LYP100 مهار شده است . شکل 7 جزئیات بادبند ساخته شده از LYP100 را نشان می دهد . نقطه تسلیم بادبند فولاد A36 برابر با بادبند LYP است جزئیات دیوار برشی فولادی را در شکل 3 دیدیم . نقطه تسلیم دیوار برشی تقریبا با بادبند LYP برابر است .

شکل 6 : جزئیات قاب بتن آرمه
شکل 6 : جزئیات قاب بتن آرمه

شکل 7 : جزئیات بادبند با فولاد LYP
شکل 7 : جزئیات بادبند با فولاد LYP

هر عضو تقویت کننده همانند بادبند و دیوار برشی فولادی متصل به قالب فولادی شکل که به بتن بسته است واز چهار تا H200*200*8*12 شکل ساخته شده در شکل 8 نشان داده شده است . که محور کوچکتر H در قاب بتنی فرو رفته است . گل میخ های برشی به صفحات جان H شکل جوش داده می شوند . بادبند ها و دیوار برشی فولادی به این صورت در طول قاب فولادی به قاب بتنی متصل می شود ، که درون قاب فولادی وبتنی قرار می گیرد .
مشخصات مکانیکی فولاد استفاده شده در لیستی در جدول 2 آمده است . ومقاومت فشاری بتن در هنگام آزمایش 21.8 و 20.7 و 25 و 23.7 Mpa به ترتیب برای MRF و BIB-LYP و BIB-A36 و SSW-LYP بدست آمده است . بارگذاری چرخه ای بطور رفت وبرگشت از طریق جک که کاملا به تیر محکم گشده وارد می شود ، مطابق شکل 10 وتیر همیشه تحت فشار قرار می گیرد .

شکل 8: نحوه اتصال قاب فولادی به قاب

شکل 8: نحوه اتصال قاب فولادی به قاب

 

شکل 9: جزئیات اتصالات

شکل 9: جزئیات اتصالات

 

جدول 2 : خصوصیات فولاد مصرفی

جدول 2 : خصوصیات فولاد مصرفی


نتیجه آزمایش و تحقیق
شکلهای 11 تا 13 نشان دهنده ترکهای نمونه های بادبند LYP و بادبند با فولاد A36 و دیوار برشی فولادی به ترتیب تقریبا زاویه جانبی 2.5% قرار می گیرند . جمع شدگی قطری بادبند از نوع LYP و A36 که هر دو تحت فشار و کشش قرار می گیرند در نتیجه ترکهای گسترده ای در ستون ایجاد می شود . دیوار برشی فولادی از نوع LYP تغییر شکل غیر متقارنی از خود نشان داده است . زمانی که بار از طرف راست اعمال می شود در اثر لنگر خمشی در نقطه ایکه در شکل 13 نشان داده شده است قاب فولادی از قاب بتنی جدا می شود .

شکل 10 : نحوه آزمایش LYP

شکل 10 : نحوه آزمایش LYP

شکل 11 : ایجاد ترک در قاب بتنی تقویت شده با بادبند با چرخش نسبی 2.7%
شکل 11 : ایجاد ترک در قاب بتنی تقویت شده با بادبند با چرخش نسبی 2.7%

شکل 12 : ایجاد ترک در قاب بتنی تقویت شده با بادبند با چرخش نسبی 2.7%
شکل 12 : ایجاد ترک در قاب بتنی تقویت شده با بادبند با چرخش نسبی 2.7%

شکل 13 : ایجاد ترک در قاب بتنی تقویت شده با چرخش نسبی 2.4%
شکل 13 : ایجاد ترک در قاب بتنی تقویت شده با چرخش نسبی 2.4%


شکل 14 نشان دهنده بار - جابه جایی های حلقه ای هیستریسس قاب مورد آزمایش است . با مقایسه قاب بدون مهار بندی ، سخت کننده ها و مقاومت تمام تقویت کننده ها ی قاب به نتایج جالبی می رسیم . شکل 15 نشان دهنده نیروی محوری در مقابل تغییر شکل به صورت حلقه های هیستریسس که برای بادبند با فولاد LYP و A36 رسم شده است می باشد. شکل 16 نشان دهنده حلقه های هیستریسس نیروی برشی در مقابل تغییر مکان افقی می باشد . آزمایش دیوار برشی فولادی نتیجه و واکنش غیر متقارن را به ما داد جدول 3 خلاصه نتیجه آزمایشرا بیان می کند
نتایج آزمایشات نشان می دهد که ممانعت از کمانش بادبند و دیوار برشی فولادی درتقویت قابها موثر است . سختی و مقاومت و شکل پذیری قاب ها بعد از تقویت کردن آنها بصورت جزئیات اتصال بین قاب بتنی و قاب فولادی بادبند عامل موثر موثراست . و ساخت آسانی دارد .
بادبند ها باعث بهبود مقاومت و شکل پذیری می شود . بهرحال جزئیات تقویت کننده های قابها برای دیوار برشی فولادی نیاز به مطالعات زیادی دارد .

شکل 14 : حلقه های هیستریسسقابهای بتنی

شکل 14 : حلقه های هیستریسسقابهای بتنی

 

شکل 15 : حلقه های هیستریسس بادبندها

شکل 15 : حلقه های هیستریسس بادبندها

 

شکل 16 : حلقه های هیستریسسدیوار برشی فولادی

شکل 16 : حلقه های هیستریسسدیوار برشی فولادی

 

جدول 3 : نتایج آزمایش ها

جدول 3 : نتایج آزمایش ها

نتیجه گیری کلی
1- مقاومت تسلیم و مقاومت نهایی فولاد LYP متاثر ار نسبت کرنشی است . مقاومت نهایی پانلهای برشی ساخته شده از فولاد LYP به سرعت بارگذاری آن بستگی دارد . در این مطالعه اختلاف مقاومت نهایی با سرعت بالا و کم حدودا 16% است. یعنی اگر سرعت بارگذاری به طور سریع باشد % 16 بیشتر از حالتی است که بطور کند بارگذاری شود .
2- ساخت و طراحی صحیح پانلهای برشی ساخته شده از فولاد LYP فولاد به چرخش نسبی % 5 رسیده است که لازمه اتلاف انرژی بالایی است .
3- تحت بارپانل برشی ابتدا تسلیم موضعی رخ می دهد و با افزایش بار کمانشپانل رخ می دهد ودر نتیجه پانل به بیرون قوس ورداشته وباعث کشش مقطع می شود . بعد از تسلیم شدن کامل پانل نوارهای بیرونی صفحه از همه آخر باعث جذب انرژی می شود . یعنی ابتدا وسط صفحه باعث جذب انرژی شده و کم کم که به نقطه تسلیم می رسند این جذب انرژی به طرف پانل منتقل می شود که در آخر تمام صفحه به نقطه تسلیم می رسند . که باعث اتلاف و جذب انرژی بسیار زیادی می شوند.

مراجع
1- کتاب مقدمه ای بر دیوار برشی فولادی نوشته دکتر سعید صبوری
2- Astaneh-Asl, A. (2000). “Steel plate shear walls,” U. S.-Japan Workshop onSeismic Fracture Issues in Steel Structure, San Francisco.
3- Seismic Assessment and Strengthening Method of Existing RC Buildings in Response to Code Revision Shun-Tyan Chen -Van Jeng- Sheng-Jin Chen-Cheng-Cheng Chen

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد